Chapter 4:

Molecular Dynamics Simulations

Monte Carlo versus Molecular Dynamics

MC

MD

Stochastic sampling
Thermodynamic properties

Easy to generalize to other ensembles
e.g. grand-canonical MC

Difficult to impose constraints

No force calculations needed

Random moves can be efficient to
overcome energy barriers

Less efficient for collective moves

dense systems difficult

deterministic sampling
thermodynamic and dynamic properties

special algorithms for different
ensembles

easy to impose constraints
force calculations needed, i.e. potential
has to be differentiable

barriers can only be overcome by
thermal energy kT

makes use of natural dynamics =>
efficient collective moves

no special problems for dense systems
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Ensemble Properties via MD

Ru-tris(bipy) in water  => use intrinsic dynamics to generate thermally
' - relevant configurations

Basic Assumptions:

* Born-Oppenheimer approximation, dynamics
on a single potential energy surface V(R)
» Ergodic theorem

(=] (A SnA(R)-Sa (i)

+ Atomic motion described by classical point
particle dynamics

Newton’s equation of motion (EOMs):

"

—

f,(t) =m,d, (t)
£,(1) ==V (R(r)

= Thermodynamic properties R(to),v(to) => R(t)
= dynamic properties! R(t)=R(1,)+ [()de = R(1,)+ ﬁ(to)(t—t0)+%fdtfﬁ(t)dt

=> Solved by numerical integration!

Different Formulations of Classical Mechanics

Newtonian Mechanics (#7-9%_j
t

—
2dlaw |1/ d°R, _ v V(R) 3N 2" order differential equations
1 dtz 1
Lagrangian Mechanics (q',Z]') Sir Isaac Newton

) ) o o 1643-1727
generalized coordinates & their time derivatives

Lagrangian [ = T(é) - V(Ei) Kinetic energy — potential energy

. C 3N(+C) 2™ order
Esbzrtilc_)igrange i_i%"'zk'%: 0| differential equations
g dtag. “~ '0q. C: number of |
qj qj i=1 q/ (holonomic) Josepq;_é)gfsl]asgrange
Hamiltonian Mechanics(4.p) constraints

Canonical coordinates r = (q, p)
Hamiltonian  H =T'(p)+V(q) Kinetic energy + potential energy

equations Y — ion .
q ot aq at ap equations William Rowan Hamilton
© images from wikipedia 1805-1865

Hamilton's |9p _ 0H |og . oH 6N 1st order differential
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Quiz VI: Newtonian vs Lagrangian Dynamics

1) Show that for R=G and V=4 and no additional constraints C, the Euler-
Lagrange equations become identical to Newton’s equations.

Numerical Integration of EOMs

Idea: integrate EOMs in small discrete time steps At during which f(At) = constant
Position Verlet ‘ Initial conditions: R(t=0), v(t=0)
Taylor expansion of R(t+At) k,(l +At) = ﬁl (6)+V, ()AL + %ﬁl (HAL +éEI (HAL +O(At?

Taylor expansion of R(t-At) R (1~ Ar)=R,(¢)~7,(t)At + %ﬁ,(t)Atz - éE, (AL +O(A

Sum R(t+A0)+ R, (t-At)=2R (¢)+a,(H)AF” + O(At*)

Position propagation Iﬁl(t +At)= 21—31(t) - ﬁl(t —-At)+ 51(t)At2 + O(At4)|

= Need positions at previous and current time steps and forces at current time
= No information on velocities needed!!
= But: velocities needed to calculate e.g. total energy!

Velocities from finite differences v (f) = R (1+AD)-R (1= A1) +O(AF)
1 2A_t
Or even: ﬁ t _R t—At
V(1) = I()A—It() +O(A?)

=> \elocities not directly available and can only be calculated with less accuracy (O(At2)
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More Time Propagation Algorithms

Leap Frog Initial conditions: R(t=0), v(t=0)

\71(t+%Az)=ﬁ,(t—%At)+al(t)

= = - 1
R,(t+At)=R,(1)+V,(t+ EAt)At

= Need velocities at previous mid-step and position and forces at current time step

= Velocities always 'z time step behind/in advance => ‘leap frog’ = ‘saute mouton’
= Local error also At*, global At? (like position Verlet)

‘ Velocity Verlet ‘ lngl(?Lgin\?(IILoor;S: 1) Calculate velocities at mid time step

i +%At) =5,() +%ﬁ,(r)At

- R ~ 1. R
R, (t+A) =R (1) +V ()Ar + Eal(t)At 2) Calculate positions at full time step

- - R (t+At)= 1?,(:)+vl(z+lm)m
V,(t+ A1) =V (1) +MN 3) Propagate velocit]ies toltzull time step
2 P+ A0 =, 1+ S0 43, (1+ A1)

Higher Order Integrators: Gear Predictor-Corrector, Yoshida, Runge-Kutta etc
=> Not much used for MD

8
Graphical Summary
Position Verlet
(@)s=dt  t t+ot =0t ¢ 1+t =6t t  t+dt =0t ¢t 1+t
v
afeid !

Velocity Verlet

© cartoon from Tildesley & Allen
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Quiz VII: Energy Conservation

1) Show that for systems with time independent potentials, the Newton (or
equivalently the Lagrange or Hamilton) equations of motion conserve total
energy: dE/dt = 0.

2) What does this imply for MD simulations in the microcanonical ensemble?

3) How could you make use of this property in choosing the appropriate
numerical integration scheme?
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Constants of Motion dA/dt =0

Noether’s theorem

If a system has a symmetry property (i.e. Hamiltonian
remains invariant upon changes) then there is a
corresponding quantity that is conserved in time.

Symmetry property Constant of motion T
Emmy Noether
. . . 1882-1935
coordinate translations Nad linear momentum © image from wikipedia
coordinate rotations & angular momentum
time translations & energy
12



Energy Conservation during Numerical Integration

or

107 107 107 Why no higher-order
: : - integrators?
. => Only more accurate at
™ small time steps
Ve|ocity Verlet d102 Properties of an Ideal
Propagator
107 . - Accurate
o - Conserve energy &
X momentum
10 Y ;
- Long time step
Gear 4t oder - Low CPU and memory cost
- Error bound
th o
Gear 6 Od‘JEW - Time reversible
/ - Symplectic (phase space
" J10¢ volume is preserved under
Gear 5™ oder time evolution)
107
© graph from Tildesley & Allen
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Choice of Time Step

- Usually single time step of constant size
- Force has to be roughly constant during At
- =>Time step has to be ca. 10-100 times smaller than fastest motion in the system

What is the fastest motion?

bond length lipid lipid : . .
vibration  rotation rotation diffusion norr‘fnoe}Idi;;rotem bloltc))gy
around bonds water  transportin rapid ° ribosome rr:tir.: f?c?l'i
relaxation _ion channel Protein folding synthesis ~ Protel ing
| | | | | | |
[ [ [ | | | |
1075 107"% 109% 10%s 103 1s 10%
b © from Semantic Scholar
Harmonic oscillator: N
= Fastest frequencies: covalent
k k: force constant _ mm, bond q'th liaht atom
W=y m: reduced mass | onds weh igh! atoms
m ) m +m, = H-X bonds

e.g. O-H stretch vibrations 3600cm™ < 108 THz < 10fs => At = 0.1-1fs
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How can we use a maximal At?

- Multiple time step integrators => different At’s for different force components
- Constraints: keep H-X bonds fixed at their equilibrium value

Constraint Algorithms e.g. bond distance constraint
Holonomic constraints o= ak(f?,z)

0, 0= [R (- R0 -2, =0

+ Dynamics in internal coordinates
« Lagrange multipliers A
Extended Lagrangian Force on atom |

L= T—V—E)Lkok (R,1) f(t) = —VIV(f?)—Vlikkok (Rit)=f" +ff

- 6ak(§,t)

R, (1+An) = R+ A0+ 3 2, (A o, (t+A) =R (14 A0~ R, (14 A0] ~d%, =0

k=1 1

System of ¢ nonlinear coupled equations

—- - 2
Dug Dug E 2 do (R>t) aa((Rat) 2
o (t+A1)= RA‘(t+At)—RB‘(t+At)+;Ak(At) 61%’/"/4 - aIL?BmB -d? =0
solved iteratively till ok < tol => Newton-Raphson, SHAKE, RATTLE
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Chapter 5:

Molecular Dynamics Simulations

(2)
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Determination of V(R) /

First-Principles Surfaces:

» Pointwise QM determination of the full 3N dim PES
= only practicable for very small molecules

* PES determined on the fly where it is needed: Car-Parrinello MD
= <1000 atoms

Empirical Interaction Potentials:

* Choice of functional form:

V({R})= EK(R[)+EEV2(R],RJ)+EE SV,(R.R,.R,)+...

I J>I I J>I K>J

» most of the time truncated after pair-potential term
 few many-body force fields (3-body: Axilrod-Teller, n-body: Tersoff, glue
potential, embedded atom method (EAM) => especially for metals)
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Determination of V(R) /

First-Principles Surfaces:

» Pointwise QM determination of the full 3N dim PES
= only practicable for very small molecules

* PES determined on the fly where it is needed: Car-Parrinello MD
= <1000 atoms

Empirical Interaction Potentials:
* Choice of functional form
(2-body? Many-body? Nonpolarizable/Polarizable ? All
atom/united atom?)

» Parameterized with experimental or QC data on small
gas phase molecules (plus adaption to condensed phase
environment)

Exp. Dipole moment H,O 1.85D (gas phase)
~3 D (water)

18
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Materials: Interatomic potentials

19

(Bio)Molecular Force Fields

interactions
* no explicit electrons only set of classical particles or interaction sites
* no quantum effects

water
Continuum solvent model

Hydrophobic effect is roughly
proportional to surface area

torsion angle

© Picture Lennérd Jones

from wikipedia

Distance bond length or 3-atom angle

* molecules modeled as classical mechanical objects with electrostatic charge

20
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https://www.ctcms.nist.gov/potentials/
https://www.ctcms.nist.gov/potentials/

Standard (Bio)molecular Force Field

1 ’ 1
- Egkb(@j —b,)* + Egke(@jk -0,)
b 0
Bond term angle term

+EE k [1+ cos(n(pl.jkh - (po)]
@ n

Torsional term

12 6
O
+ +248 — —-|—
4.7778 v,
Im op
electrostatics Lennard-Jones 12-6

* GROMOS, AMBER, CHARMM, OPLS-AA, MM3, SYBIL,
UFF, SPC, SPC/E, TIP3P, TIP4P, TIPSP etc..
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chemical bonds (2 adjacent atoms):
-> described by mechanical springs: bond potential (harmonic, anharmonic,
Morse etc..)
force constants e.g. from stretching modes
bond angles (3 adjacent atoms): ditto (harmonic, anharmonic etc..),
— force constants e.g. from bending modes
Torsional Potentials (4 adjacent atoms)

@ -®
S S
N c

™) %@

* electrostatic interactions: Coulomb interaction between effective (atom
centered or off-site) point charges

* van der Waals interactions (Pauli repulsion & dispersion): Lennard-
Jones 12-6, n-m, Williams exponential

22
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MOLECULAR DYNAMICS PACKAGES
OpenMM http://openmm.org
AMBER http://ambermd.org
CHARMM https://www.charmm.org/charmm/
GROMOS http://www.gromos.net
GROMACS http://www.gromacs.org free (incl. source)
NAMD http://www.ks.uiuc.edu/Research/namd/ free (incl. source)
TINKER https://dasher.wustl.edu/tinker free (incl. source)
X-PLOR ahttp://www.csb.yale.edu/userguides/datamanip/xplor
DL-POLY https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx
LAMMPS https://lammps.sandia.gov
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Limitations of Empirical Force Fields

= Transferability Problem
empirical force fields are only parameterized for a
given electronic environment, cannot adjust to large
changes in the electron distribution
(e.g. different types of chemical bonding)

= cannot treat breaking and forming of chemical bonds
= no chemical reactions!

= many-body effects (polarization)!

= transition metals difficult to treat!

= parameter-free first-principles MD
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Car - Parrinello Molecular Dynamics

L= 211/2M1R12 + > uldild;) - E[g 1Ry )]
+ S0l (r)ar}- o
ij

Roberto Michele
Car Parrinello
MR, =—F
OR;

,U¢z =—H¢ +Zinj¢j
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Does this fictitious dynamics have anything to do with the real
physical dynamics???

.if p<<M's->K, ~0

the total energy of the system is ~ the real physical total energy:

K. +K, +Epot ~ K, +Epot

26

4/8/24

12



4/8/24

Mixed Quantum Mechanical /
Molecular (QM/MM) Mechanical Methods

MM part

> 1000 solute atoms
> 10000 solvent atoms

QM part

~ 100-1000 atoms
~ 400 electrons

Nobelprize in Chemistry 2013
Martin Karplus Michael Levitt  Arieh Warshel

"for the development of multiscale models for complex
chemical systems”: mixed quantum mechanical/molecular
mechancial (QM/MM) simulations

28
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U~
CPMD (www.cpmd.org) @)@

QM/MM Extended CP Lagrangian:

L—*ﬂZIer,()// +5 ZMIRI‘|EMM|‘|EQM/MM{

IRz e io-51,)

Nctronic ground state Eqy = EPFT (ps, pw, GGA)

s 1= @p@)drs L 2P e g ()L zz 2z
" 2 R

12 1

12 6
Eﬁ/]oﬂ;}]—bonded 5 419m q19m +Y4e, [[Gop] _(O-Op] J EMM: AMBER or GROMOS

ImATEY  op Top Non-polarizable

JCP 116, 6941 (2002); JPCB 106, 7300 (2002); JPCB 108,7963 (2004); reviews in: CHIMIA 56, 11 (2002);
CHIMIA 59, 493 (2005); CHIMIA 9, 667-671 (2011); CHIMIA 65, 330-333 (2011)
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http://www.cpmd.org

