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Chapter 4:

Molecular Dynamics Simulations
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Monte Carlo versus Molecular Dynamics  

MC                                                MD

Stochastic sampling                                deterministic sampling

Thermodynamic properties                     thermodynamic and dynamic properties

Easy to generalize to other ensembles   special algorithms for different 
e.g. grand-canonical MC                         ensembles
Difficult to impose constraints                  easy to impose constraints

No force calculations needed                  force calculations needed, i.e. potential 

has to be differentiable

Random moves can be efficient to          barriers can only be overcome by
overcome energy barriers                       thermal energy kT
Less efficient for collective moves           makes use of natural dynamics =>

efficient collective moves
dense systems difficult                            no special problems for dense systems                           
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Ensemble Properties via MD

Þ Thermodynamic properties 
Þ dynamic properties!                       

A
ens
= wiAi

!
Ri( )

i=1

Ntot

∑ = Ai
!
R ti( )( )

i=1

Ntot

∑

=> use intrinsic dynamics to generate thermally 
relevant configurations 

Basic Assumptions:
• Born-Oppenheimer approximation, dynamics 

on a single potential energy surface V(R)
• Ergodic theorem 

• Atomic motion described by classical point 
particle dynamics

A
ens
= A

time

Newton’s equation of  motion (EOMs):
!
f I t( ) =mI

!aI t( )
!
f I t( ) = −∇ IV

!
R t( )( )

R(t0),v(t0) => R(t)
!
R t( ) =

!
R t0( )+ !v(t)dt

t0

t

∫ =
!
R t0( )+ !v(t0 )(t − t0 )+

1
2
dt !a(t)dt

t0

t

∫
t0

t

∫

=> Solved by numerical integration! 

Ru-tris(bipy) in water
Ru-tris(bipy) in water
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Different Formulations of Classical Mechanics
Newtonian Mechanics 

MI

d 2
!
RI
dt 2

= −∇ IV
!
R( ) 3N 2nd order differential equations

(
!
R, !v = d

!
R
dt

=
!"R)

2nd law

Sir Isaac Newton
1643-1727

Lagrangian Mechanics 

generalized coordinates & their time derivatives
Lagrangian

( !q, !"q)

L =T ( !"q)−V ( !q) Kinetic energy – potential energy

Euler-Lagrange
equations

∂L
∂
!qj
−
d
dt

∂L
∂
!"qj
+ λi
i=1

C

∑ ∂ci
∂
!qj
= 0

3N(+C) 2nd order 
differential equations
C: number of 
(holonomic) 

constraints

Joseph-Louis Lagrange 
1738-1813

Hamiltonian Mechanics 

Hamiltonian H =T ( !p)+V ( !q)

( !q, !p)
Canonical coordinates r = (q, p)

Kinetic energy + potential energy

Hamilton’s
equations

∂
!p
∂t
= −

∂H
∂
!q

6N 1st order differential 
equations

∂
!q
∂t
= +

∂H
∂
!p William Rowan Hamilton 

1805-1865© images from wikipedia
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1) Show that for            and            and no additional constraints C, the Euler-
Lagrange equations become identical to Newton’s equations.        

Quiz VI: Newtonian vs Lagrangian Dynamics
!
R = !q !v = !"q
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Numerical Integration of  EOMs

Idea: integrate EOMs in small discrete time steps Dt during which f(Dt) ≈ constant

Taylor expansion of R(t+Dt)                       
!
RI (t +Δt) =

!
RI (t)+

!vI (t)Δt +
1
2
!aI (t)Δt

2 +
1
6

!
bI (t)Δt

3 +O(Δt 4 )

Taylor expansion of R(t-Dt)                       
!
RI (t −Δt) =

!
RI (t)−

!vI (t)Δt +
1
2
!aI (t)Δt

2 −
1
6

!
bI (t)Δt

3 +O(Δt 4 )

Sum
!
RI (t +Δt)+

!
RI (t −Δt) = 2

!
RI (t)+

!aI (t)Δt
2 +O(Δt 4 )

!
RI (t +Δt) = 2

!
RI (t)−

!
RI (t −Δt)+

!aI (t)Δt
2 +O(Δt 4 )Position propagation

Þ Need positions at previous and current time steps and forces at current time
Þ No information on velocities needed!!
Þ But: velocities needed to calculate e.g. total energy!

!vI (t) =
!
RI (t +Δt)−

!
RI (t −Δt)

2Δt
+O(Δt 2 )Velocities from finite differences

Position Verlet Initial conditions: R(t=0), v(t=0)

!vI (t) =
!
RI (t)−

!
RI (t −Δt)
Δt

+O(Δt)
Or even:

=> Velocities not directly available and can only be calculated with less accuracy (O(Dt2) 
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More Time Propagation Algorithms

Leap Frog 

!vI (t +
1
2
Δt) = !vI (t −

1
2
Δt)+ !aI (t)

Initial conditions: R(t=0), v(t=0)

!
RI (t +Δt) =

!
RI (t)+

!vI (t +
1
2
Δt)Δt

Þ Need velocities at previous mid-step and position and forces at current time step
Þ Velocities always ½ time step behind/in advance => ‘leap frog’ = ‘saute mouton’
Þ Local error also Dt4, global Dt2 (like position Verlet)

Velocity Verlet

!vI (t +Δt) =
!vI (t)+

!aI (t)+
!aI (t +Δt)
2

Δt

Initial conditions: 
R(t=0), v(t=0)

!
RI (t +Δt) =

!
RI (t)+

!vI (t)Δt +
1
2
!aI (t)Δt

2

Higher Order Integrators: Gear Predictor-Corrector, Yoshida, Runge-Kutta etc
=> Not much used for MD 

1) Calculate velocities at mid time step
!vI (t +

1
2
Δt) = !vI (t)+

1
2
!aI (t)Δt

2) Calculate positions at full time step
!
RI (t +Δt) =

!
RI (t)+

!vI (t +
1
2
Δt)Δt

3) Propagate velocities to full time step
!vI (t +Δt) =

!vI (t +
1
2
Δt)+ 1

2
!aI (t +Δt)
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Position Verlet

Leap-Frog

Velocity Verlet

Graphical Summary

© cartoon from Tildesley & Allen
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1) Show that for systems with time independent potentials, the Newton (or
equivalently the Lagrange or Hamilton) equations of motion conserve total
energy:  dE/dt = 0.

2)   What does this imply for MD simulations in the microcanonical ensemble?

3) How could you make use of this property in choosing the appropriate 
numerical integration scheme?

Quiz VII: Energy Conservation

10

Constants of Motion dA/dt = 0

Noether’s theorem
If a system has a symmetry property (i.e. Hamiltonian 
remains invariant upon changes) then there is a 
corresponding quantity that is conserved in time.

coordinate  translations            ó linear momentum
coordinate rotations                 ó angular momentum
time translations                      ó energy

Symmetry property                                 Constant of motion
Emmy Noether

1882-1935
© image from wikipedia
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Velocity Verlet

Gear 4th oder

Gear 5th oder

Gear 6th oder

Why no higher-order 
integrators?

© graph from Tildesley & Allen

=> Only more accurate at 
small time steps

Properties of an Ideal 
Propagator

- Accurate
- Conserve energy & 

momentum
- Long time step
- Low CPU and memory cost
- Error bound
- Time reversible
- Symplectic (phase space 

volume is preserved under 
time evolution)

Energy Conservation during Numerical Integration 
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Choice of  Time Step

© from Semantic Scholar

- Usually single time step of constant size
- Force has to be roughly constant during Dt
- => Time step has to be ca. 10-100 times smaller than fastest motion in the system

What is the fastest motion?

Harmonic oscillator:

ω =
k
m

k:  force constant
m: reduced mass m = m1m2

m1 +m2

Þ Fastest frequencies: covalent 
bonds with light atoms

Þ H-X bonds

e.g. O-H stretch vibrations 3600cm-1 ó 108THz  ó 10fs => Dt ≈ 0.1-1fs 

14
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How can we use a maximal Dt?

- Multiple time step integrators => different Dt’s for different force components
- Constraints:   keep H-X bonds fixed at their equilibrium value 

σ =σ k (
!
R,t) σ k (t) =

!
RA(t)−

!
RB (t)

2
− dAB

2 = 0

Constraint Algorithms
Holonomic constraints 

e.g. bond distance constraint

• Dynamics in internal coordinates

L =T −V − λk
k=1

c

∑ σ k (
!
R,t)

Extended Lagrangian
• Lagrange multipliers l

!
f I (t) = −∇ IV (

!
R)−∇ I λk

k=1

c

∑ σ k (
!
R,t) =

!
f I
uc +
!
f I
c

!
RI (t +Δt) =

!
RI
uc(t +Δt)+ λk

∂σ k (
!
R,t)

∂RImIk=1

c

∑ (Δt)2

Force on atom I

σ k (t +Δt) =
!
RA(t +Δt)−

!
RB (t +Δt)

2
− dAB

2 = 0

System of c nonlinear coupled equations

σ j (t +Δt) =
!
RA
uc(t +Δt)−

!
RB
uc(t +Δt)+ λk (Δt)

2 ∂σ k (
!
R,t)

∂
!
RAmA

−
∂σ k (

!
R,t)

∂
!
RBmB

⎡

⎣
⎢

⎤

⎦
⎥

k=1

c

∑
2

− dAB
2 = 0

solved iteratively till sk < tol => Newton-Raphson, SHAKE, RATTLE

15

Chapter 5:

Molecular Dynamics Simulations 
(2)
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Determination of V(R)

• Pointwise QM determination of the full 3N dim PES
Þ only practicable for very small molecules 

• PES determined on the fly where it is needed: Car-Parrinello MD
Þ <1000 atoms

First-Principles Surfaces:

Empirical Interaction Potentials:

• Choice of functional form:

V ({RI}) ≅ V1 RI( )
I
∑ + V2 RI ,RJ( )

J>I
∑

I
∑ + V3 RI ,RJ ,RK( )

K>J
∑

J>I
∑

I
∑ + ...

• most of the time truncated after pair-potential term
• few many-body force fields (3-body: Axilrod-Teller, n-body: Tersoff, glue 
potential, embedded atom method (EAM) => especially for metals)

17

Determination of V(R)

• Pointwise QM determination of the full 3N dim PES
Þ only practicable for very small molecules 

• PES determined on the fly where it is needed: Car-Parrinello MD
Þ <1000 atoms

First-Principles Surfaces:

Empirical Interaction Potentials:
• Choice of functional form
(2-body? Many-body? Nonpolarizable/Polarizable ? All 
atom/united atom?)

Exp. Dipole moment H2O            1.85D (gas phase)
~3 D (water)

• Parameterized with experimental or QC data on small
gas phase molecules (plus adaption to condensed phase
environment)

18
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https://www.ctcms.nist.gov/potent
ials 

Materials: Interatomic potentials 

19

(Bio)Molecular Force Fields
• molecules modeled as classical mechanical objects with electrostatic charge 

interactions
• no explicit electrons only set of classical particles or  interaction sites
• no quantum effects

© Picture 
from wikipedia

20

https://www.ctcms.nist.gov/potentials/
https://www.ctcms.nist.gov/potentials/
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Standard (Bio)molecular Force Field

HMM =
1
2
kb(rij −b0 )

2 +
1
2
kθ (θijk −θ0 )

2

θ

∑
b
∑

+
qlqm
4πε0rlmlm

∑ + 4ε σ
rop

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

12

−
σ
rop

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

6⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

op

∑

• GROMOS, AMBER, CHARMM, OPLS-AA, MM3,  SYBIL, 
UFF, SPC, SPC/E, TIP3P, TIP4P, TIP5P etc..

+
n
∑ kn 1+ cos(nϕijkh −ϕ0 )⎡⎣ ⎤⎦

ϕ

∑

electrostatics Lennard-Jones 12-6

Bond term             angle term

Torsional term

21

chemical bonds (2 adjacent atoms):
-> described by mechanical springs: bond potential (harmonic, anharmonic,

Morse etc..)
force constants e.g. from stretching modes

bond angles (3 adjacent atoms): ditto (harmonic, anharmonic etc..), 
® force constants e.g. from bending modes

Torsional Potentials (4 adjacent atoms)

• electrostatic interactions:  Coulomb interaction between effective (atom 
centered or off-site) point charges

• van der Waals interactions (Pauli repulsion &  dispersion): Lennard-
Jones 12-6, n-m, Williams exponential

C C

H

H H

H

22
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MOLECULAR DYNAMICS PACKAGES

OpenMM http://openmm.org

AMBER                   http://ambermd.org

CHARMM           https://www.charmm.org/charmm/ 

GROMOS    http://www.gromos.net

GROMACS            http://www.gromacs.org free (incl. source)

NAMD http://www.ks.uiuc.edu/Research/namd/  free (incl. source)

TINKER https://dasher.wustl.edu/tinker  free (incl. source)

X-PLOR                  ahttp://www.csb.yale.edu/userguides/datamanip/xplor

DL-POLY                 https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx

LAMMPS                 https://lammps.sandia.gov

23

Limitations of Empirical Force Fields
Þ Transferability Problem

empirical force fields are only parameterized for a 
given electronic environment, cannot adjust to large 
changes in the electron distribution
(e.g. different types of chemical bonding)

Þ cannot treat breaking and forming of chemical bonds
Þ no chemical reactions!

Þ many-body effects (polarization)!

Þ transition metals difficult to treat!

Þ parameter-free first-principles MD 
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Car - Parrinello Molecular Dynamics 

Roberto 
Car

Michele 
Parrinello

{ } { }[ ]
( ) ( ){ }[ ]ijji

ij
ij

Iii iiI II
drrr

RERML
dff
fffµ

-L+
-+=

òå
åå ,2/1 2 

Equations of Motion

I
II R

ERM
d
d

-=

jj ijii H fffµ å L+-=
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Does this fictitious dynamics have anything to do with the real 
physical dynamics???

• if 

the total energy of the system is » the real physical total energy:

0Ks'M eI »®<<µ

potIpotIe EKEKK +»++

26



4/8/24

13

Mixed Quantum Mechanical / 
Molecular (QM/MM) Mechanical Methods

Interface 
region

QM part
~ 100-1000 atoms
~ 400 electrons

MM part
> 1000 solute atoms
> 10000 solvent atoms

27

"for the development of multiscale models for complex 
chemical systems”: mixed quantum mechanical/molecular 

mechancial (QM/MM) simulations

Nobelprize in Chemistry 2013
Martin Karplus Michael Levitt Arieh Warshel

28
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Mixed QM/MM Car-Parrinello Simulations

MM

JCP 116,  6941 (2002);  JPCB 106, 7300 (2002); JPCB 108,7963 (2004); reviews in: CHIMIA 56, 11 (2002); 
CHIMIA 59, 493 (2005); CHIMIA  9, 667-671 (2011); CHIMIA 65, 330-333 (2011)

( ) ( )
( ) ( )( )å ò

åå ò

-L+-

--+=

ji
jijijiQM

MMQMMM
I

IIi
i

i

rrrdE

EERMrrrdL

,
,

*
,

/
2*

2
1

2
1

dyy

yyµ









QM

QM/MM Extended CP Lagrangian:

[ ]åå -åå ++-+-=
j

q
q

jjqq
n

ijklnijkijb
b

bonded
MM nkkbrkE )cos(1)(

2
1)(

2
1

0
2

0
2

0

åå-

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
ø

ö
ç
ç
è

æ
-÷

÷
ø

ö
ç
ç
è

æ
+=
op op

po

op

op
op

lm lm

mlbondednon
MM rrr

qqE
612

0
4

4

ss
e

pe

é ù [ ] ååòòò ++++=
W I J

IJ

JI
xc

ex

R
ZZErdrd

r
rrdrrrVTE

2
1)()(

2
1)()( 21

12

21 r
rr

rr





Electronic ground state EQM = EDFT (ps, pw, GGA)ZI

qm

EMM: AMBER or GROMOS
Non-polarizable

CPMD (www.cpmd.org) 
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http://www.cpmd.org

