

Chapter 4:

Molecular Dynamics Simulations

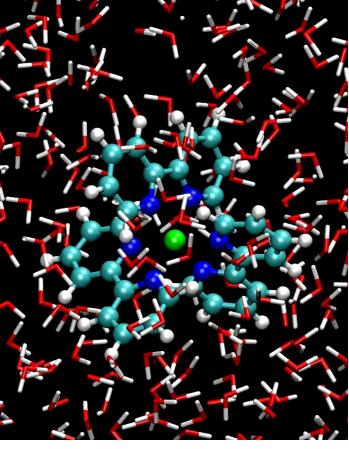
1

Monte Carlo versus Molecular Dynamics	
MC	MD
Stochastic sampling	deterministic sampling
Thermodynamic properties	thermodynamic and dynamic properties
Easy to generalize to other ensembles e.g. grand-canonical MC	special algorithms for different ensembles
Difficult to impose constraints	easy to impose constraints
No force calculations needed	force calculations needed, i.e. potential has to be differentiable
Random moves can be efficient to overcome energy barriers	barriers can only be overcome by thermal energy kT
Less efficient for collective moves	makes use of natural dynamics => efficient collective moves
dense systems difficult	no special problems for dense systems

2

Ensemble Properties via MD

Ru-tris(bipy) in water => use intrinsic dynamics to generate thermally relevant configurations



Basic Assumptions:

- Born-Oppenheimer approximation, dynamics on a single potential energy surface $V(\mathbf{R})$
- Ergodic theorem $\langle A \rangle_{ens} = \langle A \rangle_{time}$ $\langle A \rangle_{ens} = \sum_{i=1}^{N_{tot}} w_i A_i(\bar{\mathbf{R}}_i) = \sum_{i=1}^{N_{tot}} A_i(\bar{\mathbf{R}}(t_i))$
- Atomic motion described by classical point particle dynamics

⇒ Thermodynamic properties

⇒ dynamic properties!

Newton's equation of motion (EOMs):

$$\vec{f}_I(t) = m_I \vec{a}_I(t)$$

$$\vec{f}_I(t) = -\nabla_I V(\bar{\mathbf{R}}(t))$$

$$\mathbf{R}(t_0), \mathbf{v}(t_0) \Rightarrow \mathbf{R}(t)$$

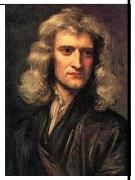
$$\bar{\mathbf{R}}(t) = \bar{\mathbf{R}}(t_0) + \int_{t_0}^t \bar{\mathbf{v}}(t) dt = \bar{\mathbf{R}}(t_0) + \bar{\mathbf{v}}(t_0)(t - t_0) + \frac{1}{2} \int_{t_0}^t dt \int_{t_0}^t \bar{\mathbf{a}}(t) dt$$

=> Solved by numerical integration!

3

Different Formulations of Classical Mechanics

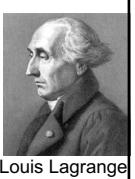
Newtonian Mechanics $(\bar{\mathbf{R}}, \bar{\mathbf{v}} = \frac{d\bar{\mathbf{R}}}{dt} = \dot{\bar{\mathbf{R}}})$



Sir Isaac Newton
1643-1727

2nd law $M_I \frac{d^2 \bar{\mathbf{R}}_I}{dt^2} = -\nabla_I V(\bar{\mathbf{R}})$ 3N 2nd order differential equations

Lagrangian Mechanics $(\bar{q}, \dot{\bar{q}})$



Joseph-Louis Lagrange
1738-1813

generalized coordinates & their time derivatives

Lagrangian $L = T(\dot{\bar{q}}) - V(\bar{q})$ Kinetic energy – potential energy

Euler-Lagrange equations $\frac{\partial L}{\partial \bar{q}_j} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\bar{q}}_j} + \sum_{i=1}^C \lambda_i \frac{\partial c_i}{\partial \bar{q}_j} = 0$ 3N(+C) 2nd order differential equations
C: number of (holonomic) constraints

Hamiltonian Mechanics (\bar{q}, \bar{p})

William Rowan Hamilton
1805-1865

Canonical coordinates $\mathbf{r} = (\mathbf{q}, \mathbf{p})$

Hamiltonian $H = T(\bar{p}) + V(\bar{q})$ Kinetic energy + potential energy

Hamilton's equations $\frac{\partial \bar{p}}{\partial t} = -\frac{\partial H}{\partial \bar{q}} \quad \frac{\partial \bar{q}}{\partial t} = +\frac{\partial H}{\partial \bar{p}}$ 6N 1st order differential equations

© images from wikipedia

4

Quiz VI: Newtonian vs Lagrangian Dynamics

1) Show that for $\vec{R} = \vec{q}$ and $\vec{v} = \dot{\vec{q}}$ and no additional constraints C, the Euler-Lagrange equations become identical to Newton's equations.

5

Numerical Integration of EOMs

Idea: integrate EOMs in small discrete time steps Δt during which $\mathbf{f}(\Delta t) \approx \text{constant}$

Position Verlet

Initial conditions: $\mathbf{R}(t=0)$, $\mathbf{v}(t=0)$

$$\text{Taylor expansion of } \mathbf{R}(t+\Delta t) \quad \vec{R}_I(t+\Delta t) = \vec{R}_I(t) + \vec{v}_I(t)\Delta t + \frac{1}{2}\vec{a}_I(t)\Delta t^2 + \frac{1}{6}\vec{b}_I(t)\Delta t^3 + O(\Delta t^4)$$

$$\text{Taylor expansion of } \mathbf{R}(t-\Delta t) \quad \vec{R}_I(t-\Delta t) = \vec{R}_I(t) - \vec{v}_I(t)\Delta t + \frac{1}{2}\vec{a}_I(t)\Delta t^2 - \frac{1}{6}\vec{b}_I(t)\Delta t^3 + O(\Delta t^4)$$

Sum

$$\vec{R}_I(t+\Delta t) + \vec{R}_I(t-\Delta t) = 2\vec{R}_I(t) + \vec{a}_I(t)\Delta t^2 + O(\Delta t^4)$$

Position propagation

$$\boxed{\vec{R}_I(t+\Delta t) = 2\vec{R}_I(t) - \vec{R}_I(t-\Delta t) + \vec{a}_I(t)\Delta t^2 + O(\Delta t^4)}$$

⇒ Need positions at previous and current time steps and forces at current time

⇒ No information on velocities needed!!

⇒ But: velocities needed to calculate e.g. total energy!

Velocities from finite differences

$$\boxed{\vec{v}_I(t) = \frac{\vec{R}_I(t+\Delta t) - \vec{R}_I(t-\Delta t)}{2\Delta t} + O(\Delta t^2)}$$

Or even:

$$\boxed{\vec{v}_I(t) = \frac{\vec{R}_I(t) - \vec{R}_I(t-\Delta t)}{\Delta t} + O(\Delta t)}$$

=> Velocities not directly available and can only be calculated with less accuracy ($O(\Delta t^2)$)

7

More Time Propagation Algorithms

Leap Frog Initial conditions: $\mathbf{R}(t=0), \mathbf{v}(t=0)$

$$\vec{v}_I(t + \frac{1}{2}\Delta t) = \vec{v}_I(t - \frac{1}{2}\Delta t) + \vec{a}_I(t)$$

$$\vec{R}_I(t + \Delta t) = \vec{R}_I(t) + \vec{v}_I(t + \frac{1}{2}\Delta t)\Delta t$$

⇒ Need velocities at previous mid-step and position and forces at current time step
 ⇒ Velocities always $\frac{1}{2}$ time step behind/in advance => 'leap frog' = 'sauté mouton'
 ⇒ Local error also Δt^4 , global Δt^2 (like position Verlet)

Velocity Verlet Initial conditions: $\mathbf{R}(t=0), \mathbf{v}(t=0)$

$$\vec{R}_I(t + \Delta t) = \vec{R}_I(t) + \vec{v}_I(t)\Delta t + \frac{1}{2}\vec{a}_I(t)\Delta t^2$$

$$\vec{v}_I(t + \Delta t) = \vec{v}_I(t) + \frac{\vec{a}_I(t) + \vec{a}_I(t + \Delta t)}{2}\Delta t$$

- 1) Calculate velocities at mid time step

$$\vec{v}_I(t + \frac{1}{2}\Delta t) = \vec{v}_I(t) + \frac{1}{2}\vec{a}_I(t)\Delta t$$
- 2) Calculate positions at full time step

$$\vec{R}_I(t + \Delta t) = \vec{R}_I(t) + \vec{v}_I(t + \frac{1}{2}\Delta t)\Delta t$$
- 3) Propagate velocities to full time step

$$\vec{v}_I(t + \Delta t) = \vec{v}_I(t + \frac{1}{2}\Delta t) + \frac{1}{2}\vec{a}_I(t + \Delta t)\Delta t$$

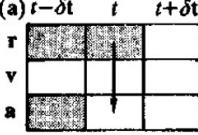
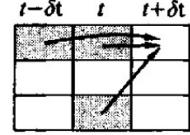
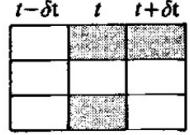
Higher Order Integrators: Gear Predictor-Corrector, Yoshida, Runge-Kutta etc
 => Not much used for MD

8

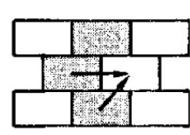
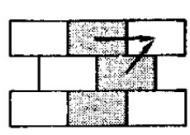
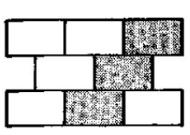
Graphical Summary

Position Verlet

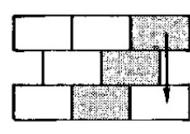
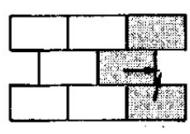
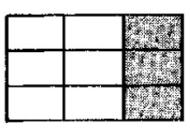
(a) $t - \delta t, t, t + \delta t$

Leap-Frog

Velocity Verlet

© cartoon from Tildesley & Allen

9

Quiz VII: Energy Conservation

- 1) Show that for systems with time independent potentials, the Newton (or equivalently the Lagrange or Hamilton) equations of motion conserve total energy: $dE/dt = 0$.
- 2) What does this imply for MD simulations in the microcanonical ensemble?
- 3) How could you make use of this property in choosing the appropriate numerical integration scheme?

10

Constants of Motion $dA/dt = 0$

Noether's theorem

If a system has a symmetry property (i.e. Hamiltonian remains invariant upon changes) then there is a corresponding quantity that is conserved in time.

Emmy Noether
1882-1935

© image from wikipedia

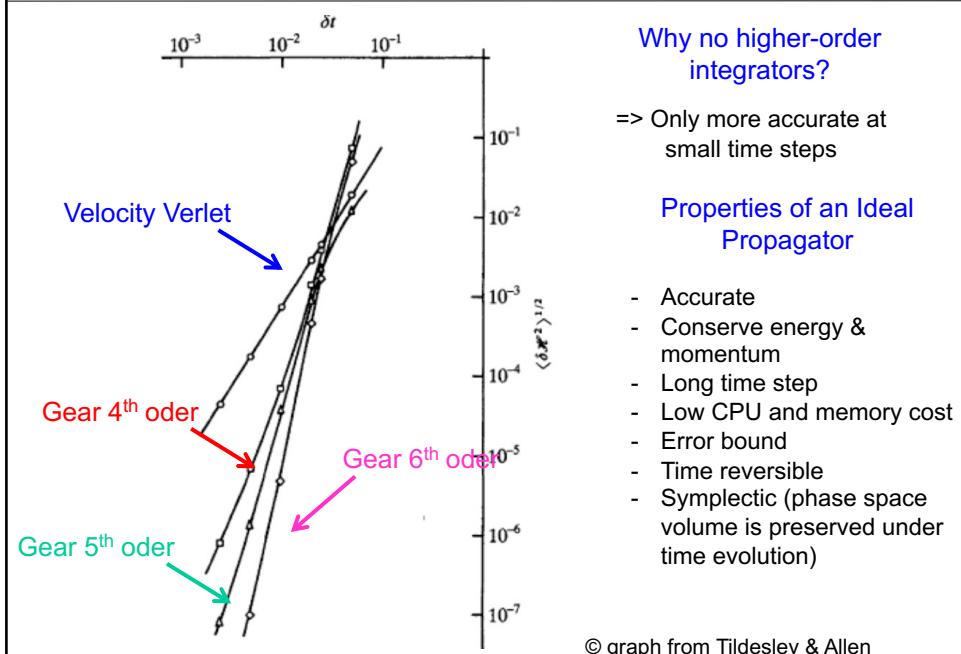
Symmetry property

Constant of motion

coordinate translations	\Leftrightarrow	linear momentum
coordinate rotations	\Leftrightarrow	angular momentum
time translations	\Leftrightarrow	energy

12

Energy Conservation during Numerical Integration

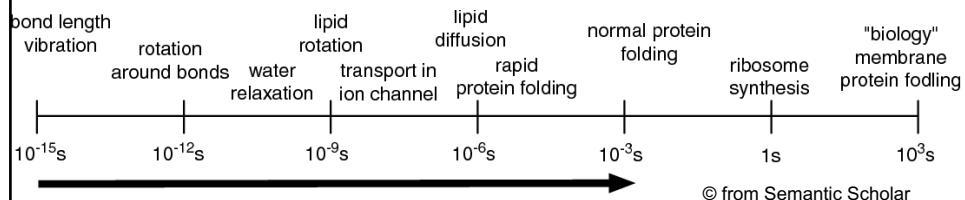


13

Choice of Time Step

- Usually single time step of constant size
- Force has to be roughly constant during Δt
- => Time step has to be ca. 10-100 times smaller than fastest motion in the system

What is the fastest motion?



Harmonic oscillator:

$$\omega = \sqrt{\frac{k}{m}}$$

k: force constant
m: reduced mass

$$m = \frac{m_1 m_2}{m_1 + m_2}$$

⇒ Fastest frequencies: covalent bonds with light atoms
⇒ H-X bonds

e.g. O-H stretch vibrations $3600\text{cm}^{-1} \Leftrightarrow 108\text{THz} \Leftrightarrow 10\text{fs} \Rightarrow \Delta t \approx 0.1-1\text{fs}$

14

How can we use a maximal Δt ?

- Multiple time step integrators => different Δt 's for different force components
- Constraints: keep H-X bonds fixed at their equilibrium value

Constraint Algorithms

Holonomic constraints $\sigma = \sigma_k(\vec{R}, t)$

- Dynamics in internal coordinates
- Lagrange multipliers λ

Extended Lagrangian

$$L = T - V - \sum_{k=1}^c \lambda_k \sigma_k(\vec{R}, t)$$

e.g. bond distance constraint

$$\sigma_k(t) = |\vec{R}_A(t) - \vec{R}_B(t)|^2 - d_{AB}^2 = 0$$

Force on atom I

$$\vec{f}_I(t) = -\nabla_I V(\vec{R}) - \nabla_I \sum_{k=1}^c \lambda_k \sigma_k(\vec{R}, t) = \vec{f}_I^{uc} + \vec{f}_I^c$$

$$\vec{R}_I(t + \Delta t) = \vec{R}_I^{uc}(t + \Delta t) + \sum_{k=1}^c \lambda_k \frac{\partial \sigma_k(\vec{R}, t)}{\partial R_I} m_I (\Delta t)^2$$

$$\sigma_k(t + \Delta t) = |\vec{R}_A(t + \Delta t) - \vec{R}_B(t + \Delta t)|^2 - d_{AB}^2 = 0$$

System of c nonlinear coupled equations

$$\sigma_j(t + \Delta t) = \left| \vec{R}_A^{uc}(t + \Delta t) - \vec{R}_B^{uc}(t + \Delta t) + \sum_{k=1}^c \lambda_k (\Delta t)^2 \left[\frac{\partial \sigma_k(\vec{R}, t)}{\partial R_A} m_A - \frac{\partial \sigma_k(\vec{R}, t)}{\partial R_B} m_B \right] \right|^2 - d_{AB}^2 = 0$$

solved iteratively till $\sigma_k < \text{tol}$

=> Newton-Raphson, SHAKE, RATTLE

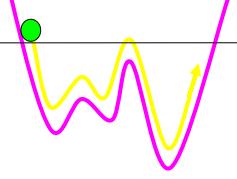
15

Chapter 5:

Molecular Dynamics Simulations (2)

16

Determination of $V(R)$



First-Principles Surfaces:

- Pointwise QM determination of the full $3N$ dim PES
⇒ only practicable for very small molecules
- PES determined on the fly where it is needed: Car-Parrinello MD
⇒ <1000 atoms

Empirical Interaction Potentials:

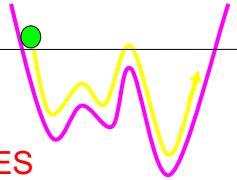
- Choice of functional form:

$$V(\{R_I\}) \cong \sum_I V_1(R_I) + \sum_I \sum_{J>I} V_2(R_I, R_J) + \sum_I \sum_{J>I} \sum_{K>J} V_3(R_I, R_J, R_K) + \dots$$

- most of the time truncated after pair-potential term
- few many-body force fields (3-body: Axilrod-Teller, n-body: Tersoff, glue potential, embedded atom method (EAM) => especially for metals)

17

Determination of $V(R)$



First-Principles Surfaces:

- Pointwise QM determination of the full $3N$ dim PES
⇒ only practicable for very small molecules
- PES determined on the fly where it is needed: Car-Parrinello MD
⇒ <1000 atoms

Empirical Interaction Potentials:

- Choice of functional form
(2-body? Many-body? Nonpolarizable/Polarizable ? All atom/united atom?)
- Parameterized with experimental or QC data on small gas phase molecules (plus adaption to condensed phase environment)

Exp. Dipole moment H ₂ O	1.85D (gas phase) ~3 D (water)
-------------------------------------	-----------------------------------

18

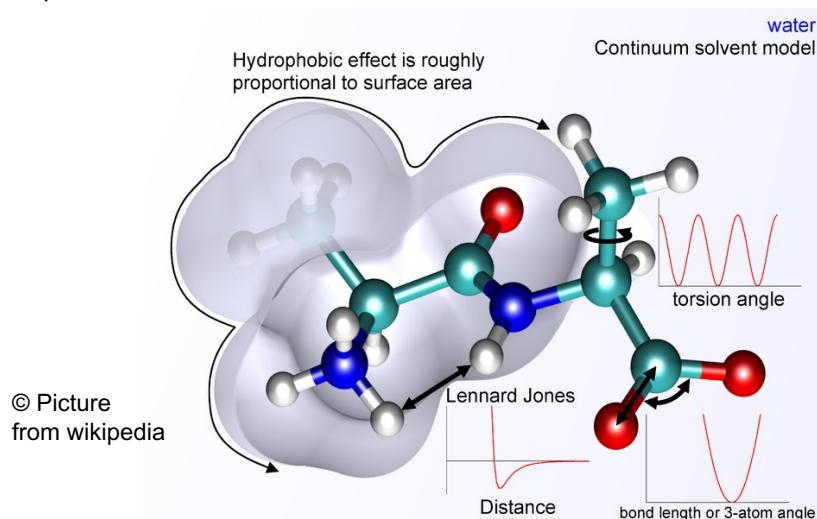
Materials: Interatomic potentials

<https://www.ctcms.nist.gov/potentials>

19

(Bio)Molecular Force Fields

- molecules modeled as classical mechanical objects with electrostatic charge interactions
- no explicit electrons only set of classical particles or interaction sites
- no quantum effects



20

Standard (Bio)molecular Force Field

$$H_{MM} = \sum_b \frac{1}{2} k_b (r_{ij} - b_0)^2 + \sum_{\theta} \frac{1}{2} k_{\theta} (\theta_{ijk} - \theta_0)^2$$

$$+ \sum_{\varphi} \sum_n k_n [1 + \cos(n\varphi_{ijk} - \varphi_0)]$$

$$+ \sum_{lm} \frac{q_l q_m}{4\pi\epsilon_0 r_{lm}} + \sum_{op} 4\epsilon \left(\left(\frac{\sigma}{r_{op}} \right)^{12} - \left(\frac{\sigma}{r_{op}} \right)^6 \right)$$

electrostatics

Lennard-Jones 12-6

- GROMOS, AMBER, CHARMM, OPLS-AA, MM3, SYBIL, UFF, SPC, SPC/E, TIP3P, TIP4P, TIP5P etc..

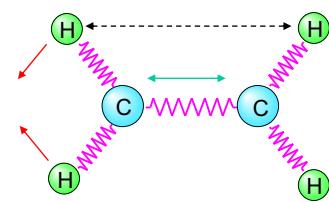
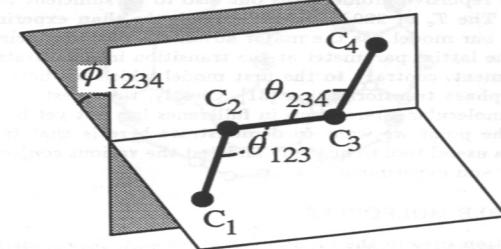
21

chemical bonds (2 adjacent atoms):

→ described by mechanical springs: bond potential (harmonic, anharmonic, Morse etc..)
force constants e.g. from stretching modes

bond angles (3 adjacent atoms): ditto (harmonic, anharmonic etc..),
→ force constants e.g. from bending modes

Torsional Potentials (4 adjacent atoms)



- **electrostatic interactions:** Coulomb interaction between effective (atom centered or off-site) point charges

- **van der Waals interactions (Pauli repulsion & dispersion):** Lennard-Jones 12-6, n-m, Williams exponential

22

MOLECULAR DYNAMICS PACKAGES	
OpenMM	http://openmm.org
AMBER	http://ambermd.org
CHARMM	https://www.charmm.org/charmm/
GROMOS	http://www.gromos.net
GROMACS	http://www.gromacs.org free (incl. source)
NAMD	http://www.ks.uiuc.edu/Research/namd/ free (incl. source)
TINKER	https://dasher.wustl.edu/tinker free (incl. source)
X-PLOR	http://www.csb.yale.edu/userguides/datamanip/xplor
DL-POLY	https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx
LAMMPS	https://lammps.sandia.gov

23

Limitations of Empirical Force Fields
⇒ Transferability Problem empirical force fields are only parameterized for a given electronic environment, cannot adjust to large changes in the electron distribution (e.g. different types of chemical bonding)
⇒ cannot treat breaking and forming of chemical bonds ⇒ no chemical reactions!
⇒ many-body effects (polarization)!
⇒ transition metals difficult to treat!
⇒ parameter-free first-principles MD

24

Car - Parrinello Molecular Dynamics

$$L = \sum_I 1/2 M_I \dot{R}_I^2 + \sum_i \mu \langle \dot{\phi}_i | \dot{\phi}_i \rangle - E[\{\phi_i\}, \{R_I\}] + \sum_{ij} \Lambda_{ij} \left[\left\{ \int \phi_i(r) \phi_j(r) dr \right\} - \delta_{ij} \right]$$

Roberto
Car

Michele
Parrinello

$$M_I \ddot{R}_I = - \frac{\delta E}{\delta R_I}$$

$$\mu \ddot{\phi}_i = -H\phi_i + \sum_j \Lambda_{ij} \phi_j$$

25

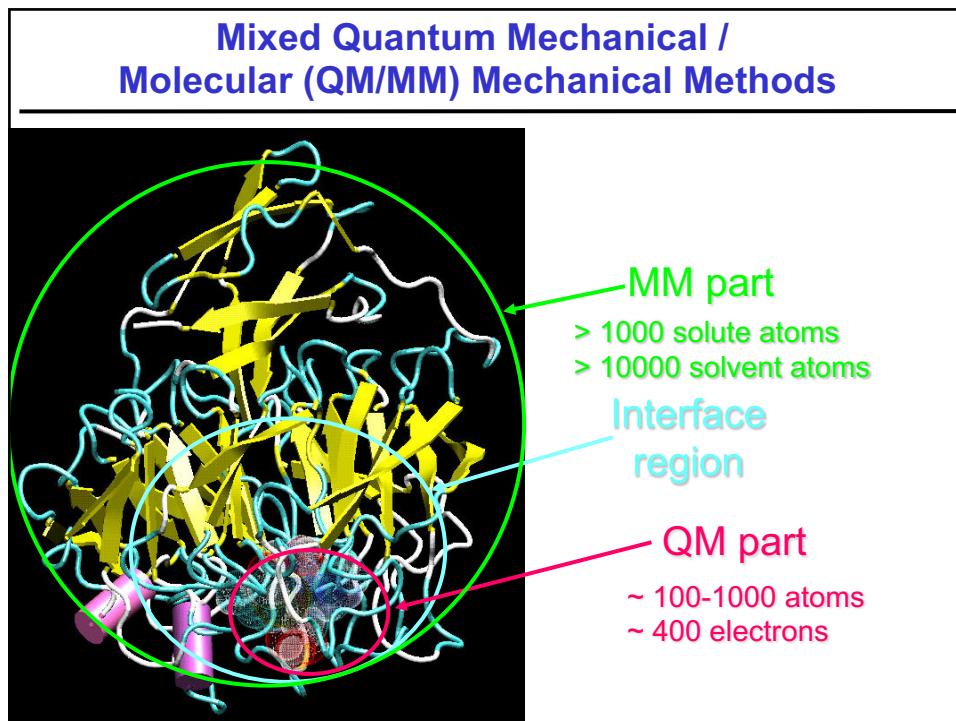
Does this fictitious dynamics have anything to do with the real physical dynamics???

• if $\mu \ll M_I's \rightarrow K_e \approx 0$

the total energy of the system is \approx the real physical total energy:

$$K_e + K_I + E_{pot} \approx K_I + E_{pot}$$

26



27

Nobelprize in Chemistry 2013

Martin Karplus	Michael Levitt	Arieh Warshel

"for the development of multiscale models for complex chemical systems": mixed quantum mechanical/molecular mechanical (QM/MM) simulations

28

